

ವಿಷಯ: 2023-24ನೇ ಶೈಕ್ಷಣಿಕ ಸಾಲಿನಿಂದ ಎಲ್ಲ ಸ್ನಾತಕ ಪದವಿಗಳಿಗೆ 5 ಮತ್ತು 6ನೇ ಸೆಮೆಸ್ಟರ್ NEP-2020 ಪಠ್ಚಕ್ರಮವನ್ನು ಅಳವಡಿಸಿರುವ ಕುರಿತು.

ಉಲ್ಲೇಖ: 1. ಸರ್ಕಾರದ ಅಧೀನ ಕಾರ್ಯದರ್ಶಿಗಳು(ವಿಶ್ವವಿದ್ಯಾಲಯ 1) ಉನ್ನತ ಶಿಕ್ಷಣ ಇಲಾಖೆ ಇವರ ಆದೇಶ ಸಂಖ್ಯೆ: ಇಡಿ 104 ಯುಎನ್ಇ 2023, ದಿ: 20.07.2023. 2. ವಿದ್ಯಾವಿಷಯಕ ಪರಿಷತ್ ಸಭೆಯ ನಿರ್ಣಯ ಸಂಖ್ಯೆ: 2 ರಿಂದ 7, ದಿ: 31.08.2023.

3. ಮಾನ್ಯ ಕುಲಪತಿಗಳ ಆದೇಶ ದಿನಾಂಕ: 04/09/2023

ಮೇಲ್ಕಾಣಿಸಿದ ವಿಷಯ ಹಾಗೂ ಉಲ್ಲೇಖಗಳನ್ವಯ ಮಾನ್ಯ ಕುಲಪತಿಗಳ ಆದೇಶದ ಮೇರೆಗೆ, 2023–24ನೇ ಶೈಕ್ಷಣಿಕ ಸಾಲಿನಿಂದ ಅನ್ವಯವಾಗುವಂತೆ, ಎಲ್ಲ B.A./ BPA (Music) /BVA / BTTM / BSW/ B.Sc./B.Sc. Pulp & Paper Science/ B.Sc. (H.M)/ BCA/ B.A.S.L.P./ B.Com/ B.Com (CS) / BBA & BA ILRD ಸ್ನಾತಕ ಪದವಿಗಳ 5 ಮತ್ತು 6ನೇ ಸೆಮೆಸ್ಬರ್ ಗಳಿಗೆ NEP-2020ರ ಮುಂದುವರೆದ ಭಾಗವಾಗಿ ವಿದ್ಯಾವಿಷಯಕ ಪರಿಷತ್ ಸಭೆಯ ಅನುಮೊದಿತ ಕೋರ್ಸಿನ ಪಠ್ಯಕ್ರಮಗಳನ್ನು ಕ.ವಿ.ವಿ. ಅಂತರ್ಜಾಲ <u>www.kud.ac.in</u> ದಲ್ಲಿ ಭಿತ್ತರಿಸಲಾಗಿದೆ. ಸದರ ಪಠ್ಯಕ್ರಮಗಳನ್ನು ಕ.ವಿ.ಎ. ಅಂತರ್ಜಾಲದಿಂದ ಡೌನಲೋಡ ಮಾಡಿಕೊಳ್ಳಲು ಸೂಚಿಸುತ್ತ ವಿದ್ಯಾರ್ಥಿಗಳ ಹಾಗೂ ಸಂಬಂಧಿಸಿದ ಎಲ್ಲ ಬೋಧಕರ ಗಮನಕ್ಕೆ ತಂದು ಅದರಂತೆ ಕಾರ್ಯಪ್ರವೃತ್ತರಾಗಲು ಕವಿವಿ ಅಧೀನದ/ಸಂಲಗ್ನ ಮಹಾವಿದ್ಯಾಲಯಗಳ ಪ್ರಾಚಾರ್ಯರುಗಳಿಗೆ ಸೂಚಿಸಲಾಗಿದೆ.

ಅಡಕ: ಮೇಲಿನಂತೆ

ಗೆ,

ಕರ್ನಾಟಕ ವಿಶ್ವವಿದ್ಯಾಲಯದ ವ್ಯಾಪ್ತಿಯಲ್ಲಿ ಬರುವ ಎಲ್ಲ ಅಧೀನ ಹಾಗೂ ಸಂಲಗ್ನ ಮಹಾವಿದ್ಯಾಲಯಗಳ ಪ್ರಾಚಾರ್ಯರುಗಳಿಗೆ. (ಕ.ವಿ.ವಿ. ಅಂರ್ತಜಾಲ ಹಾಗೂ ಮಿಂಚಂಚೆ ಮೂಲಕ ಬಿತ್ತಂಸಲಾಗುವುದು)

ಪ್ರತಿ:

- 1. ಕುಲಪತಿಗಳ ಆಪ್ತ ಕಾರ್ಯದರ್ಶಿಗಳು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 2. ಕುಲಸಚಿವರ ಆಪ್ತ ಕಾರ್ಯದರ್ಶಿಗಳು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 3. ಕುಲಸಚಿವರು (ಮೌಲ್ಯಮಾಪನ) ಆಪ್ತ ಕಾರ್ಯದರ್ಶಿಗಳು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 4. ಅಧೀಕ್ಷಕರು, ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆ / ಗೌಪ್ಯ / ಜಿ.ಎ.ಡಿ. / ವಿದ್ಯಾಂಡಳ (ಪಿ.ಜಿ.ಪಿಎಚ್.ಡಿ) ವಿಭಾಗ, ಸಂಬಂಧಿಸಿದ ಕೋರ್ಸುಗಳ ವಿಭಾಗಗಳು ಪರೀಕ್ಷಾ ವಿಭಾಗ, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 5. ನಿರ್ದೇಶಕರು, ಕಾಲೇಜು ಅಭಿವೃದ್ಧಿ / ವಿದ್ಯಾರ್ಥಿ ಕಲ್ಯಾಣ ವಿಭಾಗ, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.

KARNATAK UNIVERSITY, DHARWAD

B.Sc. in Computer Science

SYLLABUS

With Effect from 2023-24

DISCIPLINE SPECIFIC CORE COURSE (DSCC) FOR SEM V & VI,

SKILL ENHANCEMENT COURSE (SEC) FOR SEM V &VI

& INTERNSHIP FOR VI SEM.

AS PER NEP - 2020

Karnatak University, Dharwad B.Sc. in Computer Science Effective from 2023-24

	Type of	Theory/	eorv/		Instruction hour/ Total	Total	otal Duration	Marks			a n
Sem.			Course Code	Course Title	week	hours/sem	of Exam	Formative	Summative	Total	Credits
	DSCC-9	Theory	035 CSC 011	Programming in Python	04hrs	56	02 hrs	40	60	100	04
	DSCC-10	Practical	035 CSC 012	Practical in Python Programming	04 hrs	56	03 hrs	25	25	50	02
V	DSCC-11	Theory	035 CSC 013	Computer Networks	04hrs	56	02 hrs	40	60	100	04
	DSCC-12	Practical	035 CSC 014	Practical in Computer Networks	04 hrs	56	03 hrs	25	25	50	02
	Other subject										
	Other subject										
	Other subject Other										
	subject										
		Practical	035 CSC 061	Cyber Security	04hrs	56	03 hrs	25	25	50	02
				Total							
VI	DSCC-13	Theory	036 CSC 011	Web Technologies	04hrs	56	02 hrs	40	60	100	04
V I	DSCC-14	Practical	036 CSC 012	Practical in Web Technologies – Java Script, HTMS, CSS	04 hrs	56	03 hrs	25	25	50	02
	DSCC-15		036 CSC 013	Statistical Computing & R Programming	04hrs	56	02 hrs	40	60	100	04
	DSCC-16	Practical	036 CSC 014	Practical in R Programming	04 hrs	56	03 hrs	25	25	50	02
	Other subject										
	Other subject										
	Other subject										
	Other subject										
	Internship-		036 CSC 091	Mini Project	04 hrs			50	0	50	02
			1	Total		1					

Name of Course (Subject): Computer Science Programme Specific Outcome (PSO)

On completion of the 03/04 years Degree in Computer Science students will be able to:

- **PSO 1**: Understand basic concepts involved in computing.
- **PSO 2**: Apply the knowledge in computer techniques to solve real world problems.
- **PSO 3**: Think of new approaches for solving problems in different domains.
- **PSO 4**: Follow ethics in designing software with team members.
- **PSO 5**: Develop research-oriented skills.
- PSO 6: Understand good lab practices.

B.Sc. Semester – V Discipline Specific Course (DSCC)-9

Course Title: Programming in Python Course Code:035 CSC 011

Type of	Theory /		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	Practical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	assessment	Marks
				/ Semester		Marks	Marks	
DSCC-9	Theory	04	04	56 hrs.	2hrs.	40	60	100

Course Outcomes (COs): At the end of the course students will be able to:

CO 1:Understand the basic concepts in Python programming.

- **CO 2:**Understand and demonstrate the use of advanced data types such as tuples, dictionaries and lists, Tuples, and Sets.
- CO 3:Design solutions for problems using object-oriented concepts in Python.

CO 4:Use and apply the different Python Libraries for GUI Interface, Data Analysis, and Data visualization.

Unit	Contents	56hrs/ sem						
	Introduction: Introduction to Features and Applications of Python; Python Versions;							
	Installation of Python; Python Command Line mode and PythonIDEs; Simple Python							
	Program.							
	Python Basics: Identifiers; Keywords; Statements and Expressions; Variables;							
	Operators; Precedence and Association; Data Types; Indentation; Comments; Built-in							
Unit I	Functions- Console Input and Console Output, Type Conversions; Python Libraries;							
Cint I	Importing Libraries with Examples.	14						
	Python Control Flow: Types of Control Flow; Control Flow Statements- if, else, elif,							
	while loop, break, continue statements, for loop Statement; range () and exit () functions.							
	Python Functions: Types of Functions; Function Definition- Syntax, Function Calling,							
	Passing Parameters/arguments, the return statement; Default Parameters; Command line							
	Arguments; Key Word Arguments; Recursive Functions; Scope and Lifetime of							
	Variables in Functions.							
	Strings: Creating and Storing Strings; Accessing Sting Characters; the str() function;							
	Operations on Strings- Concatenation, Comparison, Slicing and Joining, Traversing;							
Unit II	Format Specifiers; Escape Sequences; Raw and Unicode Strings; Python String Methods.							
	Lists: Creating Lists; Operations on Lists; Built-in Functions on Lists; Implementation							
	of Stacks and Queues using Lists; Nested Lists.	14						
	Dictionaries: Creating Dictionaries; Operations on Dictionaries; Built-in Functions on	17						
	Dictionaries; Dictionary Methods; Populating and Traversing Dictionaries.							
	Tuples and Sets: Creating Tuples; Operations on Tuples; Built-in Functions on Tuples; Tuple							
	Methods; Creating Sets; Operations on Sets; Built-in Functions on Sets; Set Methods.							

	File Handling: File Types; Operations on Files– Create, Open, Read, Write, Close Files;	
	File Names and Paths; Format Operator.	
Unit III	Object Oriented Programming: Classes and Objects; Creating Classes and Objects;	
	Constructor Method; Classes with Multiple Objects; Objects as Arguments; Objects as	
	Return Values; Inheritance- Single and Multiple Inheritance, Multilevel and Multipath	14
	Inheritance; Encapsulation- Definition, Private Instance Variables; Polymorphism-	
	Definition, Operator Overloading. Exception Handling: Types of Errors; Exceptions;	
	Exception Handling using try, except and finally.	
	GU Interface: The Tkinter Module; Window and Widgets; Layout Management- pack,	
	grid and place.	
	Python SQLite: The SQLite3 module; SQLite Methods- connect, cursor, execute,	
	close; Connect to Database; Create Table; Operations on Tables- Insert, Select, Update.	14
Unit IV	Delete and Drop Records.	
	Data Analysis: NumPy- Introduction to NumPy, Array Creation using NumPy,	
]	Operations on Arrays; Pandas- Introduction to Pandas, Series and DataFrames, Creating	
	DataFrames from Excel Sheet and .csv file, Dictionary and Tuples. Operations on	
	DataFrames.	
	Data Visualisation: Introduction to Data Visualisation; Matplotlib Library; Different	
	Types of Charts using Pyplot- Line chart, Bar chart and Histogram and Pie chart.	

References:

1. Think Python How to Think Like a Computer Scientist, Allen Downey et al., 2nd Edition,

2015, Green Tea Press. Freely available

online@https://www.greenteapress.com/thinkpython/thinkCSpy.pdf

- 2. Introduction to Python Programming, Gowrishankar S et al., 2019, CRC Press
- 3. Python Data Analytics: Data Analysis and Science Using Pandas, matplotlib, and the Python Programming Language, Fabio Nelli, 2015, Apress®
- 4. Advance Core Python Programming, Meenu Kohli, 2021, BPB Publications
- 5. Core PYTHON Applications Programming, Wesley J. Chun, 3rd Edition, 2012, Prentice Hall.
- 6. Automate the Boring Stuff, Al Sweigart, 2015, No Starch Press, Inc.
- 7. Data Structures and Program Design Using Python, D Malhotra et al., 2021, Mercury Learning and Information LLC
- 8. http://www.ibiblio.org/g2swap/byteofpython/read/
- 9. https://docs.python.org/3/tutorial/index.html

Formative Assessment for Theory				
Assessment	Marks			
nternal Assessment Test 1	10			
nternal Assessment Test 2	10			
Quiz/ Assignment/ Small Project	10			
Seminar	10			
Total	40			
Formative Assessment as per guideline	?s.			

B.Sc. Semester – V Discipline Specific Course (DSCC)-10

Course Title: Practical in Python Programming Course Code: 035 CSC 012

Type of	Theory /		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	Practical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				/ Semester		Marks	Marks	
DSCC-10	Practical	02	04	56 hrs.	3hrs.	25	25	50

Course Outcomes (COs): At the end of the course, students will be able to:

CO 1: Set up Python to develop simple applications.

- CO 2: Learn how to write, debug and execute Python programs.
- **CO 3:**Extend the knowledge of Python programming to build a successful career in software Development.

Program	Programs	56 hrs/Sem
No		
	PART-A	
1	Check if a number belongs to the Fibonacci Sequence.	
2	Solve Quadratic Equations.	
3	Find the sum of n natural numbers.	
4	Display Multiplication table.	
5	Write a program to print the Floy'd triangle.	
6	Check if a given number is a Prime Number or not.	
7	To display palindrome of a number	
8	Write a program to enter the numbers till the user press 999 and at the end it	
	should display the count of positive, negative and zeros entered.	
9	Write a program that prompts the user to input a Decimal integer and display	
	its Binary equivalent.	
10	Create a calculator program.	
11	To display permutation of a string.	
12	Write a program that input a string and ask user to delete a given word from a	
	string.	
13	Implement Selection Sort	
14	Implement Stack	
15	Read and write int to a file.	
	PART-B	•
1	Demonstrate use of basic and advanced regular expressions for data	
	validation.	
2	Demonstrate use of List Find and display the largest number of a list without	

	using built-in function max().	
3	Demonstrate use of Dictionaries	
4	Create SQLite Database and Perform Operations on Tables	
5	Create a GUI using Tkinter module	
6	Demonstrate Exceptions in Python	
7	Drawing Line chart and Bar chart using Matplotlib	
8	Drawing Histogram and Pie chart using Matplotlib	
9	Create Array using NumPy and Perform Operations on Array	
10	Create Data Frame from Excel sheet using Pandas and Perform Operations on	
	Data Frames	

Instruction to the Examiners

Implement all programs using Python.

Assessment	Marks
Writing Program 1 + Execution without error	10
Writing Program 2 + Execution without error	10
Viva	03
Journal	02
Total	25 Marks

Note: The same shall be used for IA (Formative Assessment) and semester end Examination.

B.Sc. Semester – V Discipline Specific Course (DSCC)-11

Course Title: Computer Networks Course Code: 035 CSC 013

Type of	Theory /		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	Practical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				/ Semester		Marks	Marks	
DSCC-11	Theory	04	04	56 hrs.	2hrs.	40	60	100
	_							

Course Outcomes (COs): At the end of the course, students will be able to:

CO 1: Define various data communication components networking.

CO 2: Describe networking with reference to different types of models and topologies.

CO 3: Understand the need for Network and various layers of OSI and TCP/IP.

CO 4: Explain various Data Communications media.

CO 5: Describe the physical layer functions and components

CO 6: Identify the different types of network topologies and Switching methods.

CO 7: Describe various Data link Layer Protocols.

CO 8: Identify the different types of network devices and their functions within a network.

CO 9: Analyze and Interpret various Data Link Layer and Transport Layer protocols.

CO10: Explain different application layer protocols.

Unit	Contents	56hrs/					
		sem					
	Introduction: Computer Network: Definition, Goals, Structure; Broadcast and Point-						
	To-Point Networks; Network Topology and their various Types; Types of Network,						
Unit I	Network software, Design issues for the layers, Connection-oriented vs. Connectionless						
	service, Applications of Computer network, Protocols and Standards, The OSI						
	Reference Model, The TCP/IP Protocol suite, Comparison between OSI and TCP/IP						
	Reference model.						
	Physical Layer: Functions of Physical Layer, Analog signals, Digital signals,						
Unit II	Transmission Impairment, Data Rate Limits, and Performance.						
	Data Transmission Media: Guided Transmission Media, Magnetic Media, Twisted	14					
	Pairs, Coaxial Cable, Power Lines, Fiber Optics, Wireless Transmission,						
	Electromagnetic Spectrum, Radio Transmission, Microwave Transmission, Infrared						
	Transmission, Light Transmission, Digital Modulation and Multiplexing, Public						
	Switched Telephone Networks. Switching: Circuit switching, Message switching &						
	Packet switching						

	Data Link Layer: Functions of Data Link Layer, Data Link Control: Framing, Flow and	
	Error Control, Error Detection and Correction, High-Level Data Link Control (HDLC)	
Unit	& point — to — Point protocol (PPP), Channel Allocation Problem, Multiple Access:	14
III	Radom Access (ALOHA, CSMA, CSMA/CD, CSMA/CA), Controlled Access	
	(Reservation, Polling, Token Passing), Channelization (FDMA, TDMA, CDMA),	
	Wired LAN: Ethernet Standards and FDDI, Wireless LAN: IEEE 802.1 Ix and	
	Bluetooth Standards.	
	Transport Layer: Functions of Transport Layer, Elements of Transport Protocols:	14
	Addressing, Establishing and Releasing Connection, Flow Control & Buffering, Error	
Unit	Control, Multiplexing & De-multiplexing, Crash Recovery,	
IV	User Datagram Protocol (UDP): User Datagram, UDP Operations, Uses of UDP,	
	RPC, Principles of Reliable Data Transfer: Building a Reliable Data Transfer Protocol,	
	Pipelined Reliable Data Transfer Protocol, Go Back-N(GBN), Selective Repeat(SR).	
	Application layer : Functions of Application layer, Application Layer Protocols: DNS,	
	DHCP, WWW, HTTP, HTTPs, TELNET, FTP, SMTP, POP, IIMAP	

References:

- 1. Andrew S Tanenbaum, David. J. Wetherall, -Computer Networksl, Pearson Education, 5th Edition,
- 2. Behrouz A. Forouzan, "Data Communications and Networking", Tata McGraw-Hill, Fourth Edition
- 3. Kurose and Ross, Computer Networking- A Top-Down approach, Pearson, 5th edition
- 4. William Stallings, Data and Computer Communications, 7th Edition, PHI.
- 5. http://highered.mheducation.com/sites/0072967757/index.html
- Larry L. Peterson, Bruce S. Davie, —Computer Networks: A Systems Approachl, Morgan Kaufmann Publishers, Fifth Edition, 2011.
- 7. Brijendrasingh, Data Communication and Computer Networks, PHI.

Formative Assessment for Theory					
Assessment	Marks				
Internal Assessment Test 1	10				
Internal Assessment Test 2	10				
Quiz/ Assignment/ Small Project	10				
Seminar	10				
Total	40				
Formative Assessment as per guideline	?S.				

B.Sc. Semester – V

Discipline Specific Course (DSCC)-12

Course Title: Practical in Computer Networks Course Code:035 CSC 014

Type of Course	2	Credits	Instruction hour per week	Total No. of Lectures/Hours				
				/ Semester		Marks	Marks	
DSCC-12	Practical	02	04	56 hrs.	3hrs.	25	25	50

Course Outcomes (COs): At the end of the course, students will be able to:

CO 1: Understand Networking configuration and commands.

CO 2: Implement topologies, LAN, FTP, TCP.

Expt. No,	Programs	56.hrs/ sem
110,	Part- A	Sem
1	Prepare hardware and software specification for basic computer system and Networking.	
2	Study of different types of Network cables and practically implement the cross-wired cable and straight through cable using clamping tool.	
3	Identifying the networking devices on a network.	
4	Configure the IP address of the computer.	
5	Create a basic network and share file and folders.	
6	Study of basic network command and Network configuration commands.	
7	Installation process of any open-source network simulation software.	
	Part -B	
1	Implement connecting two nodes using network simulator.	
2	Implement connecting three nodes considering one node as a central node using network simulator. Implement a network to connect three nodes considering one node as a central node using networksimulator.	
3	Implement bus topology using network simulator.	
4	Implement star topology using network simulator.	
5	Implement ring topology using network simulator.	
6	Demonstrate the use of wireless LAN using network simulator.	

7	Implement FTP using TCP bulk transfer using network simulator.	
8	Implement connecting multiple routers and nodes and building a Hybrid topology	
	network simulator.	
Links	for open-source simulation software:	
• 1	NS3 software: https://www.nsnam.org/releases/ns-3-30/download/	
• 1	Packet Tracer Software: <u>https://www.netacad.com/courses/</u> packet-tracer	
• (GNS3 software: https://www.gns3.com/	

Instruction to the Examiners

Implement all programs using Hands on Simulation.

Formative Assessment for Practical				
Assessment	Marks			
Writing Program 1 + Execution without error	10			
Writing Program 2 + Execution without error	10			
Viva	03			
Journal	02			
Total	25 Marks			
Formative Assessment as per guideling	ies.			

Note : The same shall be used for IA(Formative Assessment) and semester end Examination.

B.Sc. Semester – V

Skill Enhancement Course: SEC-3

Course Title: Cyber Security Course Code: 035 CSC 061

Type of	Theory /		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	Practical	Credits	hour/ week	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				/ Semester		Marks	Marks	
SEC-3	Practical	02	04	56 hrs.	3hrs.	25	25	50

Course Outcomes (COs): At the end of the course students will be able to:

CO 1:Understand basic concepts of Cyber security issues and challenges associated with it. CO 2: Demonstrate Encryption and Decryption using various ciphers.

CO 3: To understand how to secure data on models, tools and techniques for enforcement of security with the some emphasis on the use of cryptography.

CO 4: Gain basic programming knowledge for Cyber Security.

Unit	Contents	
	Introduction - Cybersecurity: Definition, Types of Cyber Attacks, Defense Strategies	
	and Techniques, Guiding Principles, Cryptography; Mathematical Background for	
Unit	Cryptography: Modulo Arithmetic, The Greatest Common Divisor	
Ι	Computer Security Concepts - Definition, The Challenges of Computer Security;	
	Security Attacks: Passive Attacks, Active Attacks; Security Services: Authentication,	
	Access Control, Data Confidentiality, Data Integrity, Nonrepudiation, Availability	
	Service; Security Mechanisms; Attack Surfaces and Attack Trees; A Model for Network	
	Security.	
	Symmetric Ciphers: Symmetric Cipher Model: Cryptography, Cryptanalysis and	
Unit	Brute-Force Attack; Substitution Techniques: Caesar Cipher, Hill Cipher, One-Time	
II	Pad, Simple XOR, Transposition Techniques, Steganography	
	Asymmetric Ciphers: Principles of Public-Key Cryptosystems, Public-Key	
	Cryptosystems, Applications for Public-Key Cryptosystems, Requirements for Public-	
	Key Cryptography, RSA	
	Cryptographic Hash Functions: Applications of Cryptographic Hash Functions:	
	Message Authentication, Digital Signatures, Other Applications; Requirements and	
	Security: Security Requirements for Cryptographic Hash Functions, Brute-Force	
	Attacks, Cryptanalysis, Secure Hash Algorithm (SHA)	
	Key Management: Digital Certificates 509, Dictionary Attacks.	

Progr am No	Programs	56hrs/ sem
1	Write a Python program that defines a function and takes a password string as input and	
	returns its SHA-256 hashed representation as a hexadecimal string.	
2	Write a Python program that defines a function to generate random passwords of a	
	specified length. The function takes an optional parameter length, which is set to 8 by	
	default. If no length is specified by the user, the password will have 8 characters.	
3	Write a Python program to check if a password meets the following criteria:	
	a. At least 8 characters long,	
	b. Contains at least one uppercase letter, one lowercase letter, one digit, and one special	
	character (!, @, #, \$, %, or &),	
	c. If the password meets the criteria, print a message that says "Valid Password." If it	
	doesn't meet the criteria, print a message that says "Password does not meet	
	requirements."	
4	Write a Python program that reads a file containing a list of passwords, one per line. It	
	checks each password to see if it meets certain requirements (e.g., at least 8 characters,	
	contains both uppercase and lowercase letters, and at least one number and one special	
	character). Passwords that satisfy the requirements should be printed by the program.	
5	Write a Python program that creates a password strength meter. The program should	
	prompt the user to enter a password and check its strength based on criteria such as	
	length, complexity, and randomness. Afterwards, the program should provide	
	suggestions for improving the password's strength.	
6	Write a Python program that reads a file containing a list of usernames and passwords,	
	one pair per line (separated by a comma). It checks each password to see if it has been	
	leaked in a data breach. You can use the "Have I Been Pwned" API	
	(https://haveibeenpwned.com/API/v3) to check if a password has been leaked.	
7	Write a Python program that simulates a brute-force attack on a password by trying out	
	all possible character combinations.	
8	Python program for implementation symmetric encryption using Caesar cipher	
	algorithm	
9	Python program implementation for hacking Caesar cipher algorithm	
10	Python program to implement asymmetric encryption using RSA python library.	
11	Python program for encoding and decoding using Base64	
12	Python program to implement symmetric encryption using python library.	
13	Python program to encrypt and decrypt files.	
14	Python program to identify a digital certificate on a secured website and check what	
	kind of public key algorithm is used for encryption.	

References:

- 1. W. Stallings. Cryptography and Network Security: Principles and Practices (7th edition). Prentice Hall, 2016, ISBN-13: 978-0134444284.
- 2. Bruce Schneier, Applied Cryptography, John Wiley & Sons, Second Edition, 2007, ISBN 978-1-119-09672-6.
- 3. William Stalling & Lawrie Brown, Computer Security: Principles and Practice, Pearson 2008, Indian Edition 2010

Instruction to the Examiners

Implement all programs using Python.

Formative Assessment for Practical				
Assessment	Marks			
Writing Program 1 + Execution without error	10			
Writing Program 2 + Execution without error	10			
Viva	03			
Journal	02			
Total	25 Marks			
Formative Assessment as per guideling	ies.			

Note : The same shall be used for IA(Formative Assessment) and semester end Examination.

B.Sc. in Computer Science

VI Semester

W. e. f. from 2023-24

B.Sc. Semester – VI Discipline Specific Course (DSCC)-13

Course Title: Web Technologies Course Code: 036 CSC 011

Type of	Theory /		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	Practical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				/ Semester		Marks	Marks	
DSCC-13	Theory	04	04	56 hrs.	2hrs.	40	60	100
	·							

Course Outcomes (COs): At the end of the course students will be able to:

CO 1: Understand basics of web technology

CO 2: Recognize the different Client-side Technologies and tools like, HTML, CSS, JavaScript

CO 3: Learn Java Servlets and JDBC

CO 4: Web Technology for Mobiles and Understand web security.

Unit	Contents	56hrs/ sem			
	Introduction and Web Design: Introduction to Internet, WWW and Web 2.0, Web	14			
	browsers, Web protocols and Web servers, Web Design Principles and Web site				
Unit I	structure, client-server technologies, Client side tools and technologies, Server side				
	Scripting, URL, MIME, search engine, web server- Apache, IIS, proxy server, HTTP				
	protocol. Introductions to HTML. HTML5 Basics tags, Formatting tags in HTML,				
	HTML5 Page layout and Navigation concepts, Semantic Elements in HTML, List, type of				
	list tags, tables and form tags in HTML, multimedia basics, images, iframe, map tag,				
	embedding audio and video clips on webpage.				
	Introduction to XML: XML Syntax, XML Tree, Elements, Attributes, Namespace,				
Unit II Parser, XSLT DOM, DTD, Schema. Introduction to CSS, CSS syntax, CSS selectors,					
	Background Cursor, CSS text fonts, CSS-List Tables, CSS Box Modeling, Display				
	Positioning, Floats, CSS Gradients, Shadows, 2D and 3 Transform, Transitions, CSS				
	Animations.				
	Introduction to JavaScript: JavaScript Data type and Variables, JavaScript Operators,				
	Conditional Statements, Looping Statements, JavaScript Functions, Number, Strings,				
Unit III	Arrays, Objects in JavaScript, Window and Frame objects, Event Handling in JavaScript,				
	Exception Handling, Form Object and DOM, JSON, Browser Object Model.				
	Introduction to Servlets: Common Gateway Interface (CGI), Lifecycle of a Servlets,				
	deploying a Servlets, The Servlets API, Reading Servlets parameters, reading initialization				
Unit IV	parameters, Handling HTTP Request & Responses, Using Cookies and sessions,				
	connecting to a database using JDBC.				
	Web Security: Authentication Techniques, Design Flaws in Authentication,				
	Implementation Flaws in Authentication, Securing Authentication, Path Traversal Attacks.				
	Injecting into Interpreted Contexts, SQL Injection, NoSQL Injection, XPath Injection,				

LDAP Injection, XML Injection, HTTP Injection, Mail Service Injection. Types of XSS, XSS in Real World, Finding and Exploiting XSS Vulnerabilities, Preventing XSS Attacks

References:

- 1. Web Programming, building internet applications, Chris Bates 2nd edition, Wiley Dremtech
- 2. Java Server Pages Hans Bergsten, SPD O'Reilly
- 3. Java Script, D.Flanagan, O'Reilly, SPD
- 4. Beginning Web Programming-Jon Duckett WROX.
- 5. Web Applications: Concepts and Real-World Design, Knuckles, Wiley-India

Formative Assessment for Theory				
Assessment	Marks			
Internal Assessment Test 1	10			
Internal Assessment Test 2	10			
Quiz/ Assignment/ Small Project	10			
Seminar	10			
Total	40			
Formative Assessment as per	r guidelines.			

B.Sc. Semester – VI

Discipline Specific Course (DSCC)-14

Course Title: Practical in Web Technologies-Java Script, HTML,CSS Course Code: 036 CSC 012

Type of Course			Instruction hour per week	Total No. of Lectures/Hours / Semester				Marks
DSCC-14	Practical	02	04	56 hrs.	3hrs.	25	25	50

Course Outcomes (COs): At the end of the course, students will be able to:

CO 1:Design HTML tables, forms, multimedia and frames

CO 2: To write Servlet and Java Script Programs.

Program No	Programs	56 hrs /Sem
	PART-A	1
1	Design web pages for your college containing college name and Logo, departments list using href, list tags.	
2	Create a class timetable using table tag.	
3	Write a HTML code to design Student registrations form for your college Admission	
4	Design Web Pages with includes Multi-Media data (Image, Audio, Video, GIFs etc)	
5	Create a web page using frame.	
6	Write code in HTML to develop a webpage having two frames that divide the webpage into two equal rows and then divide the row into equal columns fill each frame with a different background color.	
7	Write CSS code to Use Inline CSS to format your ID Card.	
8	Using HTML, CSS create display a text called —Hello India ! I on top of an image of India-Map using an overlay.	
	PART-B	
1	Write a JavaScript Program to perform Basic Arithmetic operations	
2	JavaScript Program to Check Prime Number	
3	JavaScript Program to implement JavaScript Object Concept	
4	JavaScript Program to Create Array and inserting Data into Array	
5	JavaScript Program to Validate an Email Address	
6	Write a Program for printing System Date & Time using SERVLET	
7	Write a server-side SERVLET program for accept number from HTML file and Display.	
8	Write a program to Creating the Life-Cycle Servlet Application	

Instruction to the Examiners

Implement all programs.

Formative Assessment for Practical					
Assessment	Marks				
Writing Program 1 + Execution without error	10				
Writing Program 2 + Execution without error	10				
Viva	03				
Journal	02				
Total	25 Marks				
Formative Assessment as per guidelines.					

Note: The same shall be used for IA(Formative Assessment) and semester end Examination.

B.Sc. Semester – VI

Discipline Specific Course (DSCC)-15

Course Title: Statistical Computing & R Programming Course Code: 036 CSC 013

Type of	Theory /		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	Practical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	Assessment	Marks
			_	/ Semester		Marks	Marks	
DSCC-15	Theory	04	04	56 hrs.	2hrs.	40	60	100
	·							

Course Outcomes (COs): At the end of the course, students will be able to:

CO 1: Explore fundamentals of statistical analysis in R environment.

CO 2: Describe key terminologies, concepts and techniques employed in Statistical analysis.

CO 3: Define Calculate, Implement Probability and Probability Distributions to solve a wide variety of problems.

CO 4: Conduct and interpret a variety of Hypothesis Tests to aid Decision Making.

CO 5: Understand, Analyse, and Interpret Correlation Probability and Regression to analyze the underlying relationships between different variables.

Unit	Contents	56hrs/
		sem
	Introduction of the language, numeric, arithmetic, assignment, and vectors, Matrices and	14
	Arrays, Non-numeric Values, Lists and Data Frames, Special Values, Classes, and	
Unit I	Coercion, Basic Plotting.	
	Reading and writing files, Programming, Calling Functions, Conditions and Loops:	
	standalone statement with illustrations in exercise 10.1, stacking statements, coding	
	loops, Writing Functions, Exceptions, Timings, and Visibility.	
	Statistics And Probability, basic data visualisation, probability, common probability	14
Unit II	distributions: common probability mass functions, bernoulli, binomial, poisson	
	distributions, common probability density functions, uniform, normal, student's t-	
	distribution	
	Statistical testing and modelling, sampling distributions, hypothesis testing, components	14
	of hypothesis test, testing means, testing proportions, testing categorical variables, errors	
Unit III	and power, Analysis of variance	
	Simple linear regression, multiple linear regression, linear model selection and	14
Unit IV	diagnostics. Advanced graphics: plot customization, plotting regions and margins, point	
	and click coordinate interaction, customizing traditional R plots, specialized text and	
	label notation. Defining colors and plotting in higher dimensions, representing and using	
	color, 3D scatte r plots.	

References:

1. Tilman M. Davies, —The book of R: A first course in programming and ststistics, San Francisco, 2016.

2. Vishwas R. Pawgi, —Statistical computing using R softwarel, Nirali prakashan publisher, e1 edition, 2022.

3. <u>https://www.youtube.com/watch?v=KlsYCECWEWE</u> https://www.geeksforgeeks.org/r-tutorial/

https://www.tutorialspoint.com/r/index.htm

Formative Assessment for Theory					
Assessment	Marks				
Internal Assessment Test 1	10				
Internal Assessment Test 2	10				
Quiz/ Assignment/ Small Project	10				
Seminar	10				
Total	40				
Formative Assessment as per guidelines					

B.Sc. Semester – VI Discipline Specific Course (DSCC)-16 Course Title:Practical in R Programming Course Code: 036 CSC 014

Type of	Theory /		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	Practical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				/ Semester		Marks	Marks	
DSCC-16	Practical	02	04	56 hrs.	3hrs.	25	25	50

Course Outcomes (COs): At the end of the course, students will be able to:

- **CO 1:**Install, Code and Use R Programming Language in R Studio IDE to perform basic tasks on Vectors, Matrices and Data frames. Explore fundamentals of statistical analysis in R environment.
- **CO 2:** Describe key terminologies, concepts and techniques employed in Statistical Analysis.
- **CO 3:** Define Calculate, Implement Probability and Probability Distributions to solve problems.
- **CO 4:** Conduct and interpret a variety of Hypothesis Tests to aid Decision Making.
- **CO 5:** Understand, Analyse, and Interpret Correlation Probability and Regression to analyse the underlying relationships between different variables.

Program	Programs	56 hrs/Sem
No		
1	Write a R program for different types of data structures in R.	
2	Write a R program that include variables, constants, data types.	
3	Write a R program that include different operators, control structures, default values	
	for arguments, returning complex objects.	
4	Write a R program for quick sort implementation, binary search tree.	
5	Write a R program for calculating cumulative sums, and products minima maxima	
	and calculus.	
6	Write a R program for finding stationary distribution of markanov chains.	
7	Write a R program that include linear algebra operations on vectors and matrices.	
8	Write a R program for any visual representation of an object with creating graphs	
	using graphic functions: Plot(),Hist(),Line chart(),Pie(),Boxplot(),Scatterplots().	
9	Write a R program for with any dataset containing data frame objects, indexing and	
	sub setting data frames, and employ manipulating and analyzing data.	
10	Write a program to create an any application of Linear Regression in multivariate	
	context for predictive purpose.	

Instruction to the Examiners

Implement all programs using Python.

Formative Assessment for Practical					
Assessment	Marks				
Writing Program 1 + Execution without error	10				
Writing Program 2 + Execution without error	10				
Viva	03				
Journal	02				
Total	25 Marks				
Formative Assessment as per guidelines.					

Note : The same shall be used for IA(Formative Assessment) and semester end Examination.

B.Sc. Semester – VI

INTERNSHIP-1

Course Title: Internship/Mini Project Course Code:036 CSC 091

Type of Course	Theory /		Instruction	Total No. of	Duration	Formative	Summative	Total
	Practical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				/ Semester		Marks	Marks	
Inerenship-1	Practical	02	04			50	0	50
_								

Course Outcomes (COs): At the end of the course, students will be able to:

- CO 1: The student will be able to analyze, specify, design, implement and test application software.
- **CO 2:**Allows a student to demonstrate their capabilities while working independently.
- CO 3: Design a project through technical knowledge to meet customer/End user needs.
- **CO 4:** Acquire a deeper understanding of software industry trends, best practices, and current developments.
- **CO 5:** Apply process of Project Development to analyze and design the real-world problem.
- CO 6: Document the project report of various phases for future scope of the project development.

Internship:

A course requiring students to participate in a professional activity or work experience, or cooperative education activity with an entity external to the education institution, normally under the supervision of an expert of the given external entity. A key aspect of the internship is induction into actual work situations for 2 credits. Internships involve working with local industry, local governments (such as panchayats, municipalities) or private organizations, business organizations, artists, crafts persons, and similar entities to provide opportunities for students to actively engage in on-site experiential learning.

Execution of the Project:

- 1. The individual student is required to carry out the project under the guidance of course teacher.
- 2. Project work problem statement shall be identified by the students with the help of the course teachers and students shall submit the synopsis/project proposal of the same.
- 3. During project development students are expected to define a project problem, do requirements analysis, systems design, software development, apply testing strategies and do documentation with an overall emphasis on the development of a robust, efficient and reliable software systems.
- 4. The project development process has to be consistent and should follow standards identified by the guide monitoring the project work.
- 5. There is no restriction on use of hardware's and software's for carrying out the project work except that

ready application packages are not allowed.

6. The students have to submit the project dissertation of the project work carried out in one hard copy along with soft copy written on compact disc.

Note;

- 1. One credit internship is equal to 30 hrs.
- 2. Internship shall be Discipline Specific of 45-60 hours (2 credits) with duration 1-2 weeks.
- 3. Internship may be full-time/part-time (full-time during last 1-2 weeks before closure of the semester or weekly 4 hrs in the academic session for 13-14 weeks). College shall decide the suitable method for programme wise but not subject wise.
- 4. Internship mentor/supervisor shall avail work allotment during 6thsemester for a maximum of 20 hours.
- 5. The student should submit the final internship report (45-60 hours of Internship) to the mentor for completion of the internship.
- 6. Method of evaluation: Presentations/Report submission/Activity etc.

Whenever Internship is not feasible, the students can to choose the Project Work.

Formative Assessment	
Assessment	Marks
Dissertation/Project Report evaluation	20
Presentation/Demo of the application developed: (Navigation of the application, features incorporated, data validation, User Interface, reports, etc.)	20
Viva-voce	10
Total	50
Formative Assessment as per guide	lines.

GENERAL PATTERN OF THEORY QUESTION COURSE FOR DSCC (60 marks for semester end Examination with 2 hrs. duration)

Part-A

1 . Question number 1-06 carries 2 marks each. Answer any 05 questions	: 10 marks
Part-B	
2. Question number 07-11 carries 05Marks each. Answer any 04 questions	: 20 marks
Part-C	
3. Question number 12-15 carries 10 Marks each. Answer any 03 questions	: 30 marks

(Minimum 1 question from each unit and 10 marks question may have sub questions for 7+3 or 6+4 or 5+5 if necessary)

Note: Proportionate weightage shall be given to each unit based on number of hoursprescribed